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Basics
I O A
m \We know the amplitudes
m We want to find the phases

m Problem 1s 1nsolvable without additional
Information — constraints

m Use an Iterative approach



The importance of phase information
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Correct Modulus
Random Phases

Correct Phase Eisary
Random Modulus it e
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Role of error in phases (degrees)
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We would like to find the phases exactly, but we don’t have to



Algorithm Overview (Gerschberg-Saxton)
I N NN Q0

Impose real space
constraints (S,)

|mpose Fourier T
Inverse

Space .
congtraints (S,) Fourier Transform

Fourier Transform |«

Observed Intensities
& assigned phases
(Global Search)

Recovery
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Successive Projections
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m |terate between
projections

m Other variants
possible (see
Combettes,
Advances in
Imaging and
Electron Physics
95, 155-270, 1996)

Set of al U(k)

Set of [U (k) exp(if (k)

Set of U(k) that satisfy
some constraints




Over-relaxed Projections
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m |terate between
projections

m Overshoot
(deliberately)

m Converges faster

B Sometimes better
solutions

Set of al U(k)

Set of [U (k) exp(if (k)

Set of U(k) that satisfies
atomistic constraints




Orthogonal Projections
I R

Im New Vaue Imf
Estimate
7 Known
0.0 g 0.0 g
U(K) ke U(K) ke
Project:

closest point
Modulus Only In set Part of U(k) known



Example: Fourier Difference Map
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m We know all the moduli, |U(k)]

B Suppose we know part of the structure,

U (k) = U (k)lexp(it (K))

m Find the additional component D(k) such that

ULK) + D(k)| = U(k)|

m Minimize (orthogonal projection):
IDK)F =1 { [UL)+D(K)[-[U(K)[}

B Solution

D(k) = exp(if (K){ [U(K)[-U(K)I}
Conventional Fourier Difference Map
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Algorithm Overview (Gerschberg-Saxton)
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Impose real space| o)
constraints (S,) .

|mpose Fourier T
Inverse

? space .
congtraints (S,) Fourier Transform

Fourier Transform |«

Observed Intensities
& assigned phases
(Global Search)

Recovery
Criterion
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Feasible Solution What constraints ?




Where do constraints come from
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m Physical nature of experiment
— Limited beam or object size

m Physical nature of scattering
— Atomic scattering
m Statistics & Probability

— Minimum Information/Bias = Maximum
Entropy




The $64,000 question
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m Consider the points which obey a constraint as a set

B A setisconvex if any point between two membersisalso a
member

m Amplitude measurements
do not form a convex set

|F(k)|=const

B



Types of Constraints
I R

m Convex — highly convergent
— Multiple convex constraints are unique

m Non-convex —weakly convergent

— Multiple non-convex constraints may not be
unique



Multiple non-convex constraints
I R

Consider the two sets“N” and “U”

N Q)

Overal Convex Overal Non-Convex




Simplest Constraint: Limited Object
1 1 1 1 | | I [l
m 1D Continuous, overall problem is non-

unique
m 1D Non-continuous, may be unique

m nD Continuous, n3 2, overall unique
(Provided that the Patterson Function is limited)



Other Constraints
I N N N N O O O N[

Convex Non-Convex
Positivity (weak) Presence of Atoms
Atoms at given positions | Bond Lengths
L east bias (MaxEnt) Interference

A(K)=| B(K)+K nown(K)[?

Intensities & errors® ¢? | Anti-bumping

Statistics (e.g. S)) Bond angles

Support for gradient

Symmetry




Atomistic Constraints
EEEEEEEE]

r (r) known
<+«—— (convex Iif position
IS known)

Bonding —
another atom

Bumping
r (r)=0

J
.
.




Atomistic Constraint
I N N N N O O O N[

m Simple case, Unitary Sayre Equation
— F(k) = Sf(k)exp(2pik.r))

m Divide by N, #atoms & f(k), atomic
scattering factors
— U(K) = (UN)S,exp(2pik.r,) ;u(r) = (UN)Sd(r-r,)
— u(r) = Nu(r)?



Classic Direct Methods
I I T T T Ik

m Consider as an iteration
Un(K) = ug(r)
Constraint 4 |  consraint
U’ (k) < u,(k)

m Note the smilarities

— Tangent Formula® Orthogonal Projection

— Real space operator, effectively an eigenfunction (fixed point)
method



Null Hypothesis. Minimum

Bias/I|nformation
I

m Consider most probable distribution of
phases for random atoms

— Centra-Limit Theorem
» Cochran Distribution

— Bregman Projection using xlogx
» Maximum entropy or Kullback-L eibler metric

Convex constrants



Algorithm Overview (Gerschberg-Saxton)
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Multiply-Connected Feasible Set
I R

1Sy [ Z{X}HEIX ]}

Three shaded
regions common
Probability to both sets, 3
Contours

unique solutions

Set with some Z
probability ~ ~



Df = phase error

Typical results

B SIUK)[{1-cos(Df )} |NEG— O I I ]

S|U(k)]

3D Calibration Test (In 4x1 Model)
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Hypothesis (5/18/2001)
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m Think about the probability near a solution
m Apply classic D.M. statisticsto
Un+1(k)'Un(k)
m Use central-limit theorem
— P(JU(k)|cos(Df ))~Cexp{ N|U (k) [*cos(Df )}
— Df = phase error

m Needs verification — but correllates with
results!



Crystall ographic methodol ogy
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Overall Unique

Addition of additional
convex constraints
tendsto give aunique
solution

Structure Compl etion:
add additional
constraints as the

Overall Non-Convex phases become known



1D Support Constraint
I R

m “ Conventional Wisdom”
— In 1D, overall problem is non-unique

' . Unique
[Pathologlcal J<_ Reahty-» [O g g ]
Many solution / \ ne solution

'y ; ;
[Alternat&s ] Quasi-unique )
S

Differences are
_not meaningful)

A few solution




1D-Josephson Junction Problem
I R

current direction grain boundary

>
<5 » 73004

<>

I I magneng'eld Magnetic Field (B)

1(B) = [cexp(2pixB)J(x)clx

Physica C 315, 145 (1999) ; Journal of Applied Physics 87, 2454 (2000) ;
Interface Science 8, 231 (2000); PRB submitted




grain boundary

YBCO film

bicrystal substrate




Generate a compact support
[ [ I L LTI

Electrical Contacts

Create a 1-D finite object by micropatterning



Constraints on Real-Space Form
I R

m For smple (low-angle) boundaries

— Boundary isfinite

— Current Is positive

— Current is less than a known maximum (weak)
m For 45 degree boundaries

— Boundary isfinite

— Current may be positive or negative



Method
I N R R

m Standard “HIO”, 1.e. successive orthogonal
projections

m FOM = L1 or L2 mean (does not seem to
matter here)

m Genetic search to find feasible set of
solutions

— For M initial trials, best N form the feasible set



Solutions are quasi-unique
T ——L

Solution 1
Solution 2
10 L -
J(X)
(MA/NMx
5
0
0

Experimental Data: J(x) > 0
24 ° YBCO Bicrystal, 5 Min Wide Boundary



Verification via changing
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0.03 |
0.025 |
0.02 _
0.015 |
0.01 _

0.005 —

ol

——60 Kelvin
——4.2 Kelvin

Measured Data

35

_ 30
25
1 20
1 15

1 10

Temperature
Inversion

Experimental Data: 5rm boundary



45° boundary: -J.<J(X) < J,
Use a discontinuous support
e L L L L LLLLE

Cut
grooves
with a
FIB

No film

$4700 15.0kV 12.0mm x8.02k SE(L) 7/6/00 10:44 5.00um



. (MA)

Inversion (unique)
EEEEEEE

lo IIIIIIIIIIIIIIIIIIIII

2 0 2 4 6 8 10 12 14 00—

Magnetic Flux (G) (x) mm

N.B.: support is smaller than that which is known to be unique



1D- X-ray Reflectivity Problem
I R

z
Q. =2ksdn a

Substrate

Measurement:  1(Q) = 'z

O €z) exp(iQz)dz

(Kinematical Approximation) _
Bengu, Salud & Marks, PRB, in press



Compact Support for dr (z)/dz
I R

Vacuum [ Surface ) Substrate
"(2) < > >
E Density Profile
0 . J g
|_r( z) = z | vacuum
i:r() O£ r (z)£ D,
S,= 1(@-d,)r (z): r(z) <O
:D - (d, - )r (z): r(z)>D
fr(z)= D, z 3 a

S, ={r(z): IFT{F¢()}| I, (0)



Quasi-Unigue Solutions
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Depth, Z (A) FOM
Real space (y axis offset) FOM versus Original (CFOM)

Model Data



Experimental Data
I R

PFA on water + KOH solution, pH=11.2

¢
19.07+0.3 A
(19.0A)

—

— —_—

Scattering Line Density

e
O N B @ O = N bk 3 O N

10 = 0 5 10 15 0 25 30 35 A0
Depth. Z {Angstromy)

* J.S. Pedersen (1992), J. Appl. Cryst., 25, 129.



1D/3D-Surface Problem
I N I - .

B |ncomplete set of measurements
— 20-30% of total

m Atomistic constraints

m Periodic in X,y; compact support ..
constraint along z

SITiO, (001) 2x1

Basics. Surface Reviews and Letters 5, 1087 (1998) ;
Acta Crystallographica A55, 601 (1999); Physical
Review B 60, 2771 (1999)



3D-Support Constraint
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B Displacements decay as
(a+z)exp(-gz) into bulk?! r (2)=0
m Consider only non-bulk spots
m Real space constraint
— 1 (2)=0 away from surface
m Convex constraint

!Biharmonic expansion of strain field, Surface Science 294,
324 (1993)



Why we don't need all the data
I R

m The constraints, e.g. support & atomistic,
generate both amplitude & phase estimates.

m The amplitudes and phases of the
unmeasured points must also be consistent
with the constraints.

m Hence It is often (not always) possible to
recover to a good approximation the
“missing cone” values



Unmeasured Reflections
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Recovery of Unmeasured Reflections
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lmplimentation
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300-1000 known moduli typically

Two weighted parallel “atomistic” operators
Over-relaxation & extrapolation

Some “ Statistical” constraints (set large U(K) first)
L1 FOM (much better than L2)

Genetic Algorithm global search — 1000 to 10000 initial
phase sets (1-4 hrs on an HP workstation)

About 20 3D FFT’s per starting point (10 iterations)

Projection onto known atomic positions (as they become
available)



Overall methodology
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m S0lve simplest problem with no prior
Information first

m Add additional constraints as analysis
progresses
— Pruning of unrealistic solutions
— Acceptance of “correct” elements (e.g. atoms)

m Tends (hopefully) to a unigue solution



Many subtle points
I N N N A0

m Consider the FOM = | F,, o — Foyl?
B Error Gaussian

2

— Foy = Fyue T NOISE
O Ftrue Iarge 154
o <F€St> - <|:true> Estimate
. Ftl‘ue Sﬂal I 4 Z
— <F> ~noise - - True
>2 |:true

(smilar to SIM weights) ¢



Role of “background”

compensation

| 1 1 1 | | I [A;
B S (7x7) inp3m1without B S (7x7)inp3ml with
compensation compensation

Experimental Data

Note: In pémm
compensation is not needed



NiO (111) 2x2 (p3m1)
el EE e

Experimental Data: Solution is quasi-unique in 3D (two
branches in 2D)

Surface Science 470, 1-2, 1 (2000)






Conclusions
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m We don't need aformally exact recovery of
the phases, only an approximate one

m \We can generalize to include atomistic and
other constraints

m Many 1D problems are quasi-unique

m Many 3D crystallographic problems are
guasi-unigue



